Sharing is caring
Efficient Data Exchange with PyArrow

By: Alenka Frim, Raul Cumplido and Rok Mihevc

Who are we?
What is Apache Arrow?

Interprocess Communication
C Data Interface and Its Extensions
The Arrow PyCapsule Interface

Flight RPC
Arrow over HTTP
ADBC

Q&A

Who are we?

e Rok Mihevc e Raul Cumplido e Alenka Frim
e Independent e (QuantStack e Independent
(Arctos Alliance) e PyArrow, Arrow C++, (Arctos Alliance)
e Arrow C++, Cl and general e PyArrow and general

Parquet project maintenance project maintenance

What is Apache Arrow?

The initial Problem

Pandas Drill

\%\

C py & Convert

Copy & Cor

Cassandra

Copy & Convert
Copy & Co!

Parquet

The initial idea

HOW STANDARDS PROUFERATE:
(6E: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)

I4?! RIDICULOLS!

WE NEED To DEVELOP
NIVERSAL STAN
STUATON: || S rovere s || SmuAToN:
THERE ARE USE CASES. e THERE ARE

|4 COMPETING |5 COMPETING

STANDPRDS, \)A\ %p’ GTANDPRDS.

https://xkcd.com/927/

https://xkcd.com/927/

The idea becomes reality

Parquet

Cassandra

What is Arrow?

Apache Arrow is a multi-language toolbox for building high performance
applications that process and transport large data sets. It is designed to
both improve the performance of analytical algorithms and the efficiency
of moving data from one system or programming language to another.

What is Arrow?

Apache Arrow is a multi-language toolbox for building high performance
applications that process and transport large data sets. It is designed to
both improve the performance of analytical algorithms and the

efficiency of moving data from one system or programming language to

another.

@ A g

Ruby N ET

What is Arrow?

Apache Arrow is a multi-language toolbox for building high performance
applications that process and transport large data sets. It is designed to
both improve the performance of analytical algorithms and the efficiency
of moving data from one system or programming language to another.

@pa

Ruby

Microsoft®

NET

What is Arrow?

Apache Arrow is a multi-language toolbox for building high performance
applications that process and transport large data sets. It is designed to
both improve the performance of analytical algorithms and the efficiency
of moving data from one system or programming language to another.

@pa

Ruby

Microsoft®

NET

Columnar vs Row

I Noawme X subsceribed)l spent ’

4

[26) Rebet | tre | 335]
(=2 | Abecto | fake) 5402)
[L“ I P:otrj(true J[453
W LMamo I Palse]r 23.09 j

([26] Robet I i ==][saT Alberta I false rsq.o:z_][Wl r Piotr I true I 45.5_][96 | Moo | ke | 2300)

[asj %2] Nl I 46 I Rot.g-tl Aberto LP«;»J Marco Liul false I true rFalse I 555 I 54.02 I 455 Las.oa]

Other advantages of columnar format

SISD (Single Instruction Single Data)
EEEREE
e SIMD Optimizations: R T R
o Allow us to perform an operation over {/ \i/ @ \@ \f/

ol Gt e B

e Better Compression Algorithms

SIMD (Single Instruction Multip|e Data)
(D = I true I 555 l[=2 Illlsem I Palse rsu.oz)L wd) ete I we [owss) e nere J ke] as00)
|I1 'lIZ”I3“IQ'II5|
[26 Ls: [2D K = 1 Akerto I Pote [Moo | tre I false Lw; J ke [=5] 54.02 I ass f aso01) 4 ? 2 n t
Single Op1

o

Record batch and Array

=

l Schema

o,)
| e /r Vome | subseribed |_spert)

W

\

[26 Robert I true 33 5 Scalar]

[32 LAleo false) 54,02

[Null Piotr I true][45.3 j
[46 £Mamoj Palse][23.04]

Array

Record Batch
.

Record batch and Array

.field('age', pa.int8()),
a.field('name', pa.string()),
a.field('subscribed', pa.bool_()),

.field(ent', pa.floatie6())])

.array ([32, None, 461, type=pa.int8())
.array(["R
[Tx

obert", "Alberto", "Piotr", "Marco"], type=pa.string())
.array([True, 1lse, ‘ue, False], type=pa.bool_())

.array([33.5, 54.02, 45.3, 23.09], type=pa.floatlée())
pa.record_batch([a®, al, a2, a3], ma=schema)

Record batch and Array

batch
pyarrow.RecordBatch
int8
string
-ibed: bool
halffloat

Arrow format specification

@ 26 | Robert \n true 335
‘ 32 0 Alber’to# false " 54.02 ’
[i]& e j(45.3 J

(46 (Marco j\ false J[23.0)
_J

- A o
I’ T o 0
| o
I ~
~ G N
'. N
I
Y | Validity bitmap buffer | —_
f :
| Validity bitmap buffer | |00001011 Dffsets buffer | 06131823
| Values buffer| 26]32‘_‘46 \-Valugs buffer RobertAlbertoPiotrMarco

e % o

Array and buffers

209

na.array(a@).inspect() > na.array(al).inspect()

)

<ArrowArray int8> <ArrowArray string>
length: 4 - length: 4
offset: 0@ offset: 0O
null_count: 1 null_count: @
buffers[2]: buffers[3]:
- validity <bool[1l b] 110160000> - validity <bool[® b] >
- data <int8[4 b] 26 32 0 46> - data_offset <int32[20 b] @ 6 13 18 23>
- data <string[23 b] b'RobertAlbertoPiotrMarco'>
dictionary: NULL
children[0]:

dictionary: NULL
children[@]:

To sum up

e Arrow defines how arrays and tables look like in memory
e Arrow implementations provide a toolset to work with such
columnar data structure

|I10W ISIUST ll BIIII(}II OF BIIFFEIIS
= . | ~¢
e

RpLag]
(% "

=\
, }\.1

INTERPRETED AS ARRA

Arrow data Exchange

DATA EXCHANGE EVOLUTION

Apache Arrow C Device Interface,
data format and Arrow Flight Flight SQL ADBC,
IPC PyCapsule protocol

® ® ® *

2015 2017 2019 2020 _ (/4 2022 2023 2024

PyCapsule f)rotocol for

Feather File Arrow C Data Interface, Arrow C Stream C Device Interface,
Format Feather V2 (IPC File Format) Interface Arrow C Device Async,
Arrow-over-HTTP
experiments

Evolution of the Arrow project around the data exchange

Overview

In memory format

Specifications
Arrow Columnar
Format
IPC {
Arrow Flight RPC
C Data Interface (Interprocess (Feamework) ADBC
Communucation)
elstrean Arrow Flight SQL
Interface (Protocol
Implementation)
ll' -------------- 1
< 1
c Dev1c; Data | Arrow over HTTP !
Interface ' (not a spec) !
|' 1
Communication Communication Communication Client
in the same process between processes over the Network Database Connection

Serialization and Interprocess
Communication (IPC)

IPC (Interprocess Communication)

A protocol for

e turning Arrow record batches into

a one-way stream of binary <continuation: OXFFFFFFFF>
messages <metadata_size: int32>
: 1A <metadata_flatbuffer: bytes>
e and then rebuilding them on the <padding> i
other side <message body>
e — all without copying data in

memory.

https://arrow.apache.org/docs/format/Columnar.html#serialization-and-interprocess-communication-ipc

https://arrow.apache.org/docs/format/Columnar.html#serialization-and-interprocess-communication-ipc

IPC (Interprocess Communication)

Arrow IPC comes in two flavors
Stream format
e Sending an arbitrary length sequence of record batches
e Fortransferring data over a network
File format

e Serializing a fixed number of record batches
e Includes an index (footer) for random access

[PC Streaming Format

Serialize using
RecordBatchStreamWriter

memory A memory B
B .

batch1, pa.lpc.new_stream batchl, batch2, ...
batch2, as a complete
binary stream

& Y
Deserialize using)
RecordBatchStreamReader | P3-IPC.OPEN_stream
[Reading from stream]
Documentation with examples:

https://arrow.apache.org/docs/python/ipc.html no extra copy in memory!

https://arrow.apache.org/docs/python/ipc.html

IPC File Format

Serialize us?ng
RecordBatchFilewriter

memory A IPC file *.arrow
Batch: batch1, batch2, ...
’ as a complete binary stream
with footer
| 4

Deserialize using
RecordBatchFileReader

pa.ipc.open_file
[Read from memory B] [Read directly from file J

C Data Interface
and Its Extensions:
Stream and Device Interfaces

C Data Interface

C ABI interface (C Application Binary Interface)
Interface to compiled code (“API for compiled code”)

For zero-copy interchange of Arrow columnar data structures
At runtime

In the same process

Without the need to link to Arrow libraries

https://arrow.apache.org/docs/format/CDatalnterface.html
https://arrow.apache.org/blog/2020/05/03/introducing-arrow-c-data-interface/
https://willayd.com/leveraging-the-arrow-c-data-interface.html

https://arrow.apache.org/docs/format/CDataInterface.html
https://arrow.apache.org/blog/2020/05/03/introducing-arrow-c-data-interface/
https://willayd.com/leveraging-the-arrow-c-data-interface.html

C Data Interface vs. IPC

https://arrow.apache.org/docs/format/CDatalnterface.html#comparison-with-the-arrow-ipc-format

IPC (Interprocess Communication) C Data Interface

across processes and machines in-memory, inter-language
serialized data zero-copy

binary stream format C structs

needs Arrow IPC reader and writer Only C ABI

Example: Arrow Flight Example: Polars < Pandas

https://arrow.apache.org/docs/format/CDataInterface.html#comparison-with-the-arrow-ipc-format

Expanding C Data Interface

C Data Interface

Zero-copy sharing of
Arrow columnar data
in memory

Base layer
e C structs
e ArrowArray, ArrowSchema

C Stream Interface

Share streams of
data batches

Built on top of C Data Interface
with ArrowArrayStream struct
e Data chunks, same schema
e Blocking pull-style

C Device Interface
(Device Stream, Async)

Extend to non-CPU
memory

Expands C Data Interface
e tonon-CPU memory

The Arrow PyCapsule
Interface

Arrow PyCapsule Protocol

e C Data structs wrapped into a PyCapsule

e Capsules are a part of the Python C API

e Instead of returning raw integer pointers on export,
PyCapsule is created using standardized “dunder” methods

Arrow PyCapsule Protocol

e C Data structs wrapped into a PyCapsule

e Capsules are a part of the Python C API

e Instead of returning raw integer pointers on export,
PyCapsule is created using standardized “dunder” methods

e All C Data/C Device Interface benefits
e More robust
e No PyArrow dependence

e https://arrow.apache.org/docs/format/CDatalnterface/PyCapsulelnterface.html
e https://docs.python.org/3/c-api/capsule.html

https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
https://docs.python.org/3/c-api/capsule.html

PyCapsule Protocol - example from PyArrow

200

>>> import pyarrow as pa

>>> arr = pa.arrayl(|17, 7, 2025

>>> arr

<pyarrow. lib.Int64Array object at 0x117b5f760>

17
7
2025

>>> pyarrow_add =
>>> pyarrow_add
3312292397248

PyCapsule Protocol - example to Polars

200

>>> polars_series =
>>> polars_series
shape 3

Series: '' [164

17
7
2025

>>> polars_add = polars_series
>>> polars_add

3312292397248

>>> polars_add == pyarrow_add
True

PyCapsule Protocol - example to Pandas

200

>>> 1mport pandas as pd

>>> pandas_series = pd.Series(polars_series
>>> pandas_series

0) 17

1 7

2 2025

dtype: int64

>>> pandas_add = pandas_series.values.ctypes.date
>>> pandas_add

3312292397248

>>> pandas_add == polars_add == pyarrow_add
True

PyCapsule Protocol - also to ...

... Ibis, arro3, GDAL, narwhals, quak, DataFusion, DuckDB,
GeoPandas, cuDF, ...

https://qithub.com/apache/arrow/issues/39195#issuecomment-2245718008

https://github.com/apache/arrow/issues/39195#issuecomment-2245718008

Flight RPC

Remote procedure call (RPC) frameworks

e Frameworks for distributed Client Machine Server Machine
computing that alow -—-—-----—----—----——— L ,

. . | . | | |
executing routines on other | Client L Server |
machines | Retm car | | canBxeatte gty i

e Most RPCs have a language | Client Stub | | < Stub |

. . erver otu

to describe interfaces (stubs) | entSwb | |

- think of it as REST where i Deserialize Serialize i i Deserialize Serialize i
you can define your own | | | |
methods | RPC Runtime | | RPC Runtime |

. | Wait ' l | . ' |

e Note that network trafficis | Receive T Send i | Receive Send i
here needs to be serialized '-———A-———"""—"=79-"——- Call B B o

for sending

Response

Flight RPC - what is flight

e Whatisit
o RPC framework for high-performance data services
o |PC format “serialized” with protobuf and sent over gRPC
o Designed for zero-copy serialization and parallel data transfer

IPC message message FlightData {
IPC header \ FlightDescriptor flight_descriptor = 1;
IPC body — bytes data_header = 2;

bytes app_metadata = 3;
Data bytes data_body = 1000;

Flight RPC - when to use it

e When does it make sense to use it
o Server and client use Arrow layout data
o Moving large batches over the network

e When does it not make sense to use it
o Row-oriented data
o Small volume sent which can’t be batched

Flight RPC - how it works

Server implements a set of
RPC endpoints, e.qg.
GetFlightinfo

Flightinfo message includes
schema and endpoints where
data can be retrieved from

Client Metadata Server Data Server
GetFlightInfo(FlightDescriptor)
(1] >
FlightInfo{endpoints: [FlightEndpoint{ticket: Ticket}, ...]}
This may be parallelized
loop [for each endpoint in FlightInfo.endpoints]
DoGet(Ticket)
(3} =
stream of FlightData
< 0
Client Metadata Server Data Server

Retrieving data via DoGet .

Arrow over HT'TP

See https://github.com/apache/arrow-experiments/tree/main/http

Arrow over HTTP - client

To receive record batches as a client:
e SendsanHTTP GET requestto a [ulsluauiigQ&i Mg,
server. impo rt pyarrow as pa
Receives an HTTP 200 response [N PN S
from the server, with the response = urllib.request. (url)
response body containing an

Arrow IPC stream of record batches = []

batches. with pa.ipc. (response) as reader:
Adds the record batches to a list schema = reader.schema

as they are received batches = [b for b in reader]

Arrow over HT'TP - server

To send record batches from server:
e Serialize data into IPC stream of record batches with IPC stream writer

e Upon receiving a request, sends an HTTP 200 response with the body
containing an IPC stream

def (schema, batches):
with pa.RecordBatchReader. (schema, batches) as source, \
(s () as sink, \
pa.ipc. (sink, schema) as writer:
for batch in source:

sink. (0)
writer. (batch)
sink. ()
with sink. () as buffer:

yield buffer

ADBC

Arrow Database Connectivity
https://arrow.apache.org/adbc/

ADBC - what is ADBC

At a high level, ADBC is the standard for Arrow-native database access. It
allows for executing SQL queries while working with Arrow data.

At a lower level, ADBC is two separate but related things:
e An abstract API for interacting with databases and Arrow data.

e A set of concrete implementations of that abstract API in different
languages and drivers for different databases

ADBC - why use ADBC

e Using ADBC driver provides columnar Arrow data to the consumer
e Eliminates needs for data copies - transport layer is IPC
e Eliminates row to columnar data conversion

JDBC Row data
OoDBC

S DB-API ﬁ

Y
y

: 7
Convert :(‘\%U/afo'a

3
andas
TabM ppolars

ADBC |

ADBC - current support

Driver Supported Languages Implementation Language Status
Apache DataFusion Rust Rust Experimental
BigQuery (C#) C# C# Experimental
BigQuery (Go) C/C++ Go Experimental
DuckDB " C/C++ C++ Stable
Flight SQL (Go) C/C++, C# B! Go Stable
Flight SQL (Java) Java Java Experimental
JDBC Adapter Java Java Experimental
PostgreSQL C/C++ C++ Stable
SQLite C/C++ C Stable
Snowflake C/C++, Rust ¥ Go Stable

Thrift protocol-based 2! C# C# Experimental

summary

In memory format

Specifications
Arrow Columnar
Format
IPC 3
C Data Interface Arrow Flight RPC
(Interprocess (Ecanenari) ADBC
Communucation)
C Stream Arrow Flight SQL
Interface (Protocol
Implementation)
I" """""""" 1
s |
C Device Data | Arrow over HTTP '
Interface ' (not a spec) :
\ A
Communication Communication Communication Client
in the same process between processes over the Network Database Connection

| Slides |

